MHD Nanofluid Flow Analysis in a Semi-Porous Channel by a Combined Series Solution Method

Authors

  • D.D. Ganji Babol University of Technology, Department of Mechanical Engineering, Babol, Iran
  • M. Hatami Babol University of Technology, Department of Mechanical Engineering, Babol, Iran | Esfarayen Faculty of Industrial and Engineering, Department of Mechanical Engineering, Esfarayen, North Khorasan, Iran
  • R. Nouri Babol University of Technology, Department of Mechanical Engineering, Babol, Iran
Abstract:

In this paper, Least Square Method (LSM) and Differential Transformation Method (DTM) are used to solve the problem of laminar nanofluid flow in a semi-porous channel in the presence of transverse magnetic field. Due to existence some shortcomings in each method, a novel and efficient method named LS-DTM is introduced which omitted those defects and has an excellent agreement with numerical solution. In the present study, the effective thermal conductivity and viscosity of nanofluid are calculated by Maxwell–Garnetts (MG) and Brinkman models, respectively. The influence of the three dimensionless numbers: the nanofluid volume friction, Hartmann number and Reynolds number on non-dimensional velocity profile are considered. The results show that velocity boundary layer thickness decrease with increase of Reynolds number and nanoparticle volume friction and it increases as Hartmann number increases.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

mhd nanofluid flow analysis in a semi-porous channel by a combined series solution method

in this paper, least square method (lsm) and differential transformation method (dtm) are used to solve the problem of laminar nanofluid flow in a semi-porous channel in the presence of transverse magnetic field. due to existence some shortcomings in each method, a novel and efficient method named ls-dtm is introduced which omitted those defects and has an excellent agreement with numerical sol...

full text

Nanofluid Flow in a Semi-porous Channel in the Presence of Uniform Magnetic Field

In this paper, the problem of laminar nanofluid flow in a semi-porous channel is investigated analytically using Homotopy Perturbation Method (HPM). This problem is in the presence of transverse magnetic field. Here, it has been attempted to show the capabilities and wide-range applications of the Homotopy Perturbation Method in comparison with the numerical method in solving such problems. The...

full text

Entropy generation analysis of MHD forced convective flow through a horizontal porous channel

Entropy generation due to viscous incompressible MHD forced convective dissipative fluid flow through a horizontal channel of finite depth in the existence of an inclined magnetic field and heat source effect has been examined. The governing non-linear partial differential equations for momentum, energy and entropy generation are derived and solved by using the analytical method. In addition; t...

full text

Analytical solution of MHD flow and heat transfer over a permeable nonlinearly stretching sheet in a porous medium filled by a nanofluid

In this paper, the differential transform method and Padé approximation (DTM-Padé) is applied to obtain the approximate analytical solutions of the MHD flow and heat transfer of a nanofluid over a nonlinearly stretching permeable sheet in porous. The similarity solution is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations...

full text

Analysis of Flow of Nanofluid through a Porous Channel with Expanding or Contracting Walls using Chebychev Spectral Collocation Method

In this work, we applied Chebychev spectral collocation method to analyze the unsteady two-dimensional flow of nanofluid in a porous channel through expanding or contracting walls with large injection or suction. The solutions are used to study the effects of various parameters on the flow of the nanofluid in the porous channel. From the analysis, It was established that increase in expansion r...

full text

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 2

pages  124- 137

publication date 2013-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023